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NATIOKAL ADVISORY COMMITTEE FOR AERONAUTICS.
TECHNICAL NOTE XO. 1Z26.-
NOTES ON AERODYNAMIC FORCES ON AIRSHIP HULLS, *

By L. B. Tuckerman,
Engineer Physicist, Bureau of Standards,

Introduction.

For a first aprroximation the air flow #rouhd the airship
hull is assumed %o cbev the laws of a perfect (i.e. free from
viscosity) incompressible fluid., The flov is further assumed
to be free from vorticss (or rotational motion of the fluid).

These assumptione lead to very great simplifications of the
formulae used but necessarily imply an imperfect picture of the
actual oonditions. The value of the results derends therefore
upon the magnitude of the forces froduced.bv the disturbances in
the flow caused bv viscosity with the corsegquent production of
vortices in the fiuid, If thesé are sm2ll in comparison with the
forces due to tke assumed irrotational rerfect fluid flow the

results will give a good ricture of the actual comnditions of an

girshiz in fiight,

* Dr, Max M, Munk's theory of the aerodynanic forces on an air-
snip ‘hull is gresented in N.A, C.A. Technical Notes Nos. 104, 105
and 108, This rarer was yrerared by Dr. L. B. Tuckerman, a member
of the syecial commnittee on the examinztion of the Naval Airshirx
ZR-1, as a rart of the Committee's rerort and as an interrreta-
tion and discussion of Dr. Munk's rarers.
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General,

The motion of a body through the fluid is accompanied with
kinetic energy not only of its own motion but also of the motion
of the fluid which it pushes aside, Since the fiuld is assumed
to be free from viscosity this kinetic energy of the fluid motion
is not dissipated but accomﬁanies the body in its motion, being
transferred from portion to portion of the fluid as the pody moves
through it. The body, therefore, in any steady motion is accompa-
nied by a steady configuration of fluid flow which changes only
when the motion of the body changes. If the velocity of the body
is increased in any proportion the velocity of all portions of the
fluid is increased proportionately (provided the velocities are
sma&ll in comparison with the veloclty of sound in the fluid; this
is true here since the fluid is assumed to be incompressible) and
the kinetic energy of the accompanying fluid motion remains pro-
rortional to the kinetic energy of the body itself.

If, however, the character of the motion of the body changes,
the shape of the accompanying fluid motion changes and the corre-
sronding additional kinetic energy changes, although the velocity
remain the.same, |

Pure Translation.

For a motion of pure translation Kirchhoff has shown that the

kinetic energy (Ef) of the fluid can be written

3Eg = p KVp + P KVy + P E,V3 (1)

R R L ERE WA

where X, ¥y, and z are three special axes in the body, mutually
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perpendicular Vg, Vy and V; the corresponding components of the
velocity of the configuration and p Ke, P Ky and p, K; are

"added inertias" corresponding to these three directioms. On . -
Ky, Ky and X, depend only the configuration of the body. The

total kinetic energy E of the motion of the body is
a 2
2E = 2Ef + 2E, = ( PRgem)Vi + (pKy+rﬂV; + (PKgzm)Vy (3)

Since no energy is dissipated, any change in the total kinetic
energy of the motion of the bodyv must be due to work done on the

body (or by the body) ,
~ 8W= 6E=( pRyim)Vy 8Vt ( 0 Kyum)Vy 8Vp+( p Kpm)V, 87, (3)

If this change be due to a rotation of the body without change of
total velocity

VZ + V¢ + V3 = V® = constant
and Vi 8Vyg + Vy 6Vy + Vy 8Vy =0 ~
then - 86W =6E = (P Kyt M) Vg Vet {0 Ky+ M) Vy 8Vy+( pKat A)Vy 6V5(4)

where the lLagrangean multiplier A may be given any value we please.
In order that there be no moment acting on the body tending to pro-
duce this change it is necessé,ry that OE =T6 B =0 where

T = the moment of force acting on the body and &6 the angle of

rotation, This equation can obviously be satisfied (provided

YR (e

Ke A Ky"'i.é RKg# Ky) "in three and only three ways.

L
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AN=- P Eg, Vy =V, =0
N=~ P Ky, Vy=Vg=0 (8)
N=- P Kz, Vg =Vy =0

These three mutually perpendicular directions in the body are there-
fore directions of steady translation without the action of exter-

nal moments, : . -

Lateral transfer of momenitum.

Consider a configuration of fluid flow 4, (Fig. 1) having
a resultant momentum M in the v direction and no resultant mo-
ment of momentum about the z-axis. .Let this fluid motion bezde—
stroyed and replaced by an identical configuration in 4, dis-
placed 2 distance d having a component d& sin 6 (where € is the
angle between the displacement and the direction of-the resultant
momentum) in the direction of the x-axis. To effect this change
a negative resultant impulse -M must be applied to the fluid in

A, and a positive resultant impulse +M +to the fluid in 4s.

h

That is,'a resultant. impulse moment M4 sin 6 must act on the
fluid. If, instead of a sudden transfer of momentum the transfer
takes place continuously during the fime_ t with a.unifor: VSiCo~
ity V such that d = V& the impulse moment Md sin € is due
to a momenﬁ.

T =4V sin B (8)
acting during the time +.

The distinction here between the momentum of the configuration

ol -

of fluid flow and the momentum of a solid body should be noticed.

L}
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In a solid body the resultant momentum necessarily lies in the di-
rection of its motion. The direction of resultant momentum of a .
configuration of fluid flow does not necessarily coincide with the
direction of the motion of the configuration,

If T =0 +then 8 % O and the resultant momentum coincides
in direction with the velocity. _

In the three mutually perpendicular directions considered
above, since there is no resultant moment of force, the resultant
momentum of the fluid must coincide in direction with the velocity.
In these three directions therefore, the momentum of the fluid is
given by

My = PEg Vg, My = p Ky Vy, M3 = p Ky Vy (7)

and the resultant momentum in any other uniform translation is the
resultant of these three moments. In general, the resultant mo-
mentum M does not coincide in direction with the velocity of the
body and thus needs a resultant moment T = MV sin 6 1o be applied
to the body in order to maintain a uniform motion of translation.

This moment can be calculated either by
!

o

E_ aEf _
e T e =T | (&)

o)

(a8 in 4) or from T = MV sin 6 where M sin 8 1is the transverse
component of the momentum, (as in 8)-

The calculation of the coefficients Kx, Ky and Ky for any
given body solves-tﬁerefore for that body the problem of the total
moments necessary to maintain it in uniform t;anslation at any

angle of pitch and yaw,

HILIY YO
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If the motion of the body is confined %o the xy plane and
Ky =K, and Ky =K;, then

2 2 R , ~
B3E = PKy Vo + 0K Vg, = p (K; cos® o + Kp siv® Oy

.

where a is the angle of attack. Then
oE
T=—§-'—-c—1£=1/2 pV? sin 2 a (K, - k,) (e)

or, other~ise, from equation (7)

Mo

PKy Vg, = PKy V cosa
Uy = PK, Vy = PK; V sina
and the lateral comronent of the momentum

Heinoa =4, cosa - My sina

1/2 pV sin 3 a (Rp - K )

and consequently, as before
T = VM ein a=1/2 pV° s8in 2 o (K, - Ky) (9 )

rorce Distribution.

The determination of the force distribution which rroduces
these moments requires a more detailed investization,

General Method.

The general method may be sketched as follows:
Under the assumptions here made the fluld flow possesses & vVe-
locity potential ¢ such that the component velocities of the fluid

(not of the configuration) a%t any point are given by:
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having determined this velocity potential the pressure at each

point of the surface is evaluated from the extended Bernouilli

theorem

P Y 2
E=_g__£_l/2v2..n. v=/v;+V§+VZ (10)

Here Q 1s the rotential of the external forces acting on the flu-
id. Since we are neglecting the change of pressure with height
this may be treated as a constant. As Dr, Yunk has shown, the

term %?% may, if desired, be transformed into

%g% =~V v cos 8 (11)
where V is the velocity of the configuration at the point and
@ the angle between the velocity of the configuration and the

velocity of the fluid. _

This pressure is then integrated over the surface of . success—
ive zones of the ship, giving the resultant distribution of longi-
tudinal and lateral forces along the ship.

This process although perfectly general in theory is gener-
ally impractical, since the velocity potential @ and consequently
the velocity distribution has only been determined for a very few
simple geometrical shapes, and even in these cases the computa-
tions are laborious.

Dr. Munk has, however, used the knowledge of the detailed
pressure distribution based upon known velocity potentials in dis-

cussing the effect of changing shape upon flow around two dimen-

a oy
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sicnal shapes (No. 104, pp. 7, 8 and 9).

Anproximate Holution.

To avold these difficulties, Dr. Munk attacks the problem in
she following approximate way: The flow about any porition of the .
elongated ship is considered to approximate at any given instant
the corresponding flow about an infinite cylinder having the same
crogs-section. (Fig, 2). In this case the transverse added inertia
is readily calculated from the well known case of two dimensional
fiow about an elliptic.cylinder.

The velocity potential in this case is determined from the

complex funetion

z=(x+1iy)=f (@) =f (9 + 1V

[y

where @ is the velocity potential and V¥ the stream function,
Here
z = A w'$~§'.

Proper choice of tﬁe constante A and B fits this to any ellipﬁ;c
cylinder between the limits of the infinitely thin flat plate and
the circle. (See Lamb's Hydrodynamics, 4th edition, p.79, Lorenz.
Technische Hydro-Mechanik, p.zséj .

If a and b are the major and minor semi-axes of the el-
lipse, the added inertia per unit length p Ké' = pwb® and
P Kg = p wa®, In the special case of a circular cylinder %o

which he confines himself in this presentation
k) =k} =% =0T =5 : (12)
2 T B3 b A

~here S 1is the cross-section of the ship at this point, X

la.
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The contribution of any element of length dx

is of course zero.
t2> the total moment of the ship is therefore approximately from

equation (9)
&
oy 4x=dT=1/3 pV®sin 2a (K, - Ky)dx=1/2 07> sin 208 dx (13)
2 .
d 1 = lateral load per unit length, the

L= shear and —
ax~-
(14)

total moment T = 1/3 pV°sin 20/ S dx=1/2 pV°Q sin 2 &

is the volume of the ship, and the lateral load

where Q
F = f fdx 1is distributed according to the law
dzT 2 . as
dx = 1/2 oV s:.nzaa-}-c-dx (15)

fdx = axZ

‘ :
This same method of reasoning he applies later to the problem of

the rotating ship.
The same result is arrived at mere directly as Dr. Munk ex-

rlained verbally, as follows:
The transverse momentum of an element of length of the ship

is, from equations (7) and (13) (Fig. 2)
(18)

aM - - :
ax dx = d¥ = p V sina 8 dx
' as
dt

If the cross-section S were increasing at the rate the trans-

verse momentum would be increasing at the rate

95 4 = f ax

g (e = PV sin a at

dt
requiring a transverse load distribution f dx +to impart this in-

B
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crease of momentum. The equivalent of this increase of cross-

section is imparted to the transverse air flow by %he longitudinal

component of the ship's motion (Fig. 3). As shown in the diagram

the air which was floﬁing about the section S 1is after'a time d%
das

. i ds as _. gs
flowing about the section S + af-dt where T V cos a i -

The corresponding increase of transverse momentum must be imparted

to it by a laterally distributed force on the ship.

I

f dx PV gin a V cosa == dx

(15)

1/2 pV®sin 3 ¢ Gy dx

as before.
The total moment on the ship calculated by this approximation
wa.s

T=1/3 pV®Q sin 2 a (14)

obviously here the volume replaces the coefficient (K, — K ) or
equation (9).
These coefficients K, and K; have been calculated for 2 num-

ber of simple shapes. In particular, Lamb has calculated their

value for dvary ellipsoids of different ratios of length to diameéer.

In this case, for all finite lengths K, - K; 1is less than

the volume. Dr. Munk therefore proposes to apply a correction fac-

tor  (k, — k,) (where Xk, = %3 and k, = %l) to the preceding for-

mula, thus giving

1/8 p Ve (k, — ky)sin 2 @« Q@ . (17)

Total moment

Shear

B1%
]

1/2 p V® (k, - k,)sin 2 & S (18)

k.

Al
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Lateral force f dx = 1/3 p V2 (k, - k,)sin 30 32 ax (19)

where k, and k; are Lamb's coefficients for the ellipsoid corre-

stonding to the ship as calculated by the formula

% (ellipsoid) = ( /g g-) (ship) (20)

ROTATION

General

If a body be in uniform translation parallel to one of its
principal directions (V), (Fig. 4), the added momentum of the
fluid w%ill have the same direction. About any axis A' perpendic-
ular to this direction there will be in general a resultant moment

of momentum of the added momentum. There will, however, be a line

BB' parallel to the direction of the velocity such that the result-
ant moment of momentum about any perpendicular axis (A) through it

is zero, A similar line exists for translation in each of the other

two "principal directions”. These three lines do not in general
intersect in a point. In bodies possessing certain types of aero-
dynamic symmetry, however, they intersect in a point C, the aexo-
dynamic center of the body. If the body possesses geometrical sym-
metry this aerodynamic center lies on the planes or axes of symme-—
try. This aerodynamic center exists in airship hulls and will be
used as the center of reference for points in the body. The axis
of x will be laid tﬁrough it in the "longitudinal" prrincipal axis
of the body, this axis being an axis of central symmetry.

The ship (Fig. 5) is supposed to be turning with a uniform

angular velocity

i<

sbout a fixed azis O where V is the linear

s
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velocity of the aerodynamic center. The acdompanying velocity con-
figuration has a steady shape and steady speed and consequently a
constant added energy but turns with the ship about the fixed cen-
ter 0. The constancy of the energy redquires that the resultant
of all the forces acting on the ship pass through the center 0
since otherwise the forces would have & moment about this axis and
consequently'add (or subtract) energy, These forces may be re-
solved into a radial (centripetal) air force F, mnecessary to bal-
ance the centrifugal force of the ship and of the accompanying
fluid and a tangential (inertial drag) force Fr either positive
or negative, shich is added to the frictional drag (neglected here).
The radial forces pass through 0O, bhut the tangential force Fj;
considered as applied at the aerodynamic center requires an accom-
panying moment F,R to displace the line of action to O.

For the purpose of determining these forces the motion may be
resolved into two rarts, a parallel translation along thé path and

& rotation with angular velocity % about the aerodynamic center.

_If the center of mass of the ship coincides with its aerodynamic
center this latter motion will involve no resultant forces nor re-
sultant moments and consequently the resultant forces are calcula-
ble from the parallel translation alone.

The total tangential momentum M., (Fig. 6) of the ship in
parallel motion is composed of two parts, . due to the mass m

1

of the body

M. = PV m | . (21)

and MTa due to the added tangential inertia
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P

Ur, = PV (Ko sin®a + K; cos<Qj Yy

«nije the total radial momentum Mr ies the added radial momentum
alone and is

M, = 1/2 pV (K; - K;) sin 3 @ (23)
then (see Fig. 8)

My

it

My sin € + ¥+ cos 8 My = MTn + .M'ra

My = ¥y cos 8 ~ My sin 6
}

From these the radial and tangential forces necessary to maintain

the motion are

Fy = aMy - (My cos 6 — M, sin 6)%56—- =< (My cos - My sin@)

dt

-l

M.

Fy = a-,bi;-_--mr gin 6 + ¥, cos @ )%%: - = (M, sin 6+ ¥, cos 8)

o<t

If 8

0 Fx = FT and F}r =-Fr

Then P, =

b P

My = 1/3 PV° £ (K, - &) sin 3¢ (24)
This represents a drag when & 1is positive,

And E =-JX M. =- pV®

v m- pV> % (Ko sina + Ky cos? a) (25)

i
R
which is a centrifugal force.

This computation is of course‘exactly the same as the usual

calculation of centrifugal force in rigid dynamics, the only differ-

ence being the existence of a transverse momentum, which gives rise =

to the "centrifugal" drag force. This is a generalized centrifugal
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force in the Lagrangean sense,
The drag Fr is wholly due to air forces acting on the ship
but of the centrifugal force F, that part due to the mass of the

ship P Ve-% m involves no air forces, the added centrifugal force -
ﬁvg“% (K2 sin® « + K, cos® a ) however, is transmitted to the

ship by air forces acting on it,

The drag Fr considered applied at the aerodynamic center is
accompaniad by the moment Fy R = 1/2 p V> (K, - K;) sin 2 ¢ which
1s the same as the unstable moment in Tectilinear motion (equation
(8) ). The maintenance of the motion demands therefore (Fig. 7)

& resultant force F and a moment T in addition to the aerody-
namic forces here discussed., The fins alone supply the transverse
component F!' and the moment T = F'a.

Distribution of these forces.

Dr. Munk calculates the distribution of these air forces by
the first method used in the case of rectilinear motion. Here,
however, it is necessary to bear in mind that because of the curva-
ture of the path the effective angle.of attack of successive ele-
ments of the ship's length are different.

These angles of attdck may be calculated as -followvs (See Fig. 8).

X - "R = R
sin &  Gip(a' + g) coga’

X

1
5 Cos o )

a'=a - g =a - arec sin (

il ol

Then sin 2%'= gin 30 cos 2 (arc sin-% cos a')

- - cog 206 gin 2 (arc sin% cog ')
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If @ andr% are both small thisg reduces o

sin 8 &' = gin 3a ~ 2

o

Then each element of length dx contributes an element of moment

o - 2 (g4 b4 27
o X =1/3p7 (ein 2 - 2 %) 8 dx (27)

The first term is due to the translation alone and the second term

to the added rotation combined with the translation. Dr. Munk cal-
culates these terms separately but the reasoning is equivalent to

that here given., The total amount is
T=1/2pvzsin20fde—pVa—%—Lfodx (28)

The first term is the unstable moment of the translational motion,
" and the second term is zero since S S x 4x 1is the static moment
of the volume about the aerodynamic center, which on the assump-
tions here made coincides with the center of volume. As before,
this calculation gives a resultant_mément somewhat larger than
acts on a ship of finite length so. that he introduces again’the
correction factor (k, - k;)} in the first term.

This factor gives the correct résultant moment. Since the
remalining terms have no resultant, nor resultant moment, there is
no obvious correction factor. Dr. Munk uses here k,* as a cor-
rection factor instead of (k, - k,).

The force dig+ributinn is then

R

*Note: The difference is not great and it is all a matter of judg-—
ment but Dr. Munk's reason for using a3 different correction factor
here is not clear to me. The forces are all calculated on the game
basis of approximation. L.B.T.

I CLY i
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&
ax®

dx=f dz=1/2p V" (i,-k,)sin 30 Sax - RS 4 s)ax (29)

and the total transverse-force '
F=/ ftdg=0

This ayprozimate distribution of transverse air forces therr..
fore accounts for the resultant unstable moment of the ship,
If of course does not account for the drag., The undermined drag
forces are, however, small, 2nd teing longitudinal, give rise to
no appreciable bending moments in the hull.

In addition, however, the aprroxzimatien hés vet to a:crqouht’ for

the added centrifugal force (equation (25) ).

o V3 E% (¥ sin®a + K cos?a)

This force is of course small since a and K, are both small,

For an Dé ratio of 6 and an angle of attack of € degrees it is

legs than 6 rer cent of the ship's owrn centrifugal force.

Of the two parts of this added centrifugal force, the first

C 2 * . .
pVER—asinza = pV ?Q sin®« T

being due to the transverse added inertia can reasonably be assum-

ed to be distributed aco rdiﬂg to the cross sectional area or

k
fdx = pV° == 8 sin®c (30)

K k
The second term pPV- R_l cos?®a = P V> R—l Q

(31)

(@ being small cos® @ = 1 2rprox.)

I
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rejquires a more detailed treatment, since its longitudinal distri-
bution might give rise to considerable bending moments. As this
term arises frem the longitudinal added inertia alone, he consid-
ers & case of longitudinal flow only, the flow arising from a sin-
gle source and equal sink (Fig, 9). He chooses this flow (which
gives a blunter airship model) instead of the corresponding ellip-
goid because of the simpler mathematical treatment. The corres-

sponding velocity is

VD* ' |
® =18 %:'~ %?;> (see Fig. 9) with the velocity distribution
__ 8% v /x-¢c x+c
v, S T (Fe-Ene)

Here L = 2¢c + D approximately -
2

-

or nearly L = 2ec,

As may be seen from the indicated line of flow the longitudinal
component of the velocity and consequently the added inertia is
positive near the two ends but negative along nearly the whole of

the side of the ship., At mid-section this negative velocity is
2

. VD= .
approximately :Zg "diminishing to about IEE% opposite the two
o

sources and then rapidly changing sign around the nose. To simpli--

fy his computation Dr. Munk assumes that it maintains its mid-
2

section value %%g along the whole length and that the transverse

velocity is negligible. This obviously results in an over-estima-—

tion of the bending moments produced, This flow, however, repre-

sents & pure translation. The ship actually is rotating about a
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center O (Fig. 10), so that if V is the ship's velocity at che
asrodynamic¢ center, the surface velocity of the ship changes across
the ship having a veloocity V! = (V + y'g) at any point a horizon-
tal distance y from the center. Dr. Munk* assumes that the air
velocity remains the same in the circular flight as in straight

fiight,** which gives

* In a personal conversation, Dr. Munk states that ?his mgthod of
reasoning is different from the one he used, but as it arrives at
the same result, is presumably equivalent to it.

**Note: If the alternative assumption be made that the air veloci?y
&t any point of the surface in ciroular flight bears the same ratio
to the surnface velocity of the ship as it does in straight flight
then

. yp ¥
V'—-T?"'i"z‘(l+R)
V=V (148
and p=LTP -2 a4y

and the pressure gradient

dp . PV2D? BN Y\. P VD2 c
dy R L° ¢ iz / (1 *R,T TR LT OEPTOX

imately.

This pressure gradient is twice as great as on D, Munk's:assumption,
It seems probable that the actual air velocity will lie between
these two extremes, so that Dr. Munk's assumption represents an un~
der-~estimation of the rressure gradient and consequently an under—
estimation of the bending moments. 4As noted above, the assumption
that the air velocity maintained its mid-section velocity

2
%%5 along the whole length, caused an over-estimation of the bending

moments, These two factors will of course rartially compensate sach -
other, so that the Munk's assumption is probably more nearly'correct.



air velocity v' =v = - EE?

configuration velocity V' =V (1 + %).

Since the transverse air velooity is considered negligible
8=0 and cos § =1, then the pressure (egquation (10)

combined with (11) )
(Y 2

p=-3 vt - pV! v' cos 0 + constant
gives
2 .
- _ P ryp? Y VD3, .
P=-~—=({=%) + 0.0V (2 + 9] L constant
2 (-21, ) LV {1+ 7)) o

and the pressure gradient:

e
Sp _ _PV'D
dy 2R L

This pressure gradient acts in the same way as a gravitational

<
bressure gradient due to 3 fluid of density Jiﬂigg in a field of
3RL PV IFQ
“horizontal intensity 1. The total lateral force is then ETE_EE_

(32) and is distributed along the ship proporticnal to the cross-

sectional area. The added centrifugal force %%Ei Qk, consists

=]
therefore of two centrifugal forces % ﬁgve Q (ks + ggr) (33) con-

centrated practically at the ends of tke ship combined with a cen-

. p V3 D?
tripetal force —{— Q ETR:

tional to the cross-sectional area. The factor

(32) distributed along the ship proror-
PV
=

Q 1is of course _

the centrifugal force of the ship itself, whéen in a state of static
5

equilibrium. For L =6, k = .045 and ziz = , 0l4.
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Transverse foroce on the fins.

A small partbf the centrifugal force can be balanced by the
lateral viscous drag of the ship but the larger rortion nust be
balanced by the lateral force on the fins. In addition, this later-
al force must neutralize the unstable moment of the ship (Fig, 7).
In his computation Dr, Munk assumes this latera}l force equal to the
centrifugal force of the ship alone. This either negleots the add-

ed centrifugal force or congiders it neutralized by the lateral

viscous drag. Equating moments (see Fig. 7)

PV Qg = p7°Q1/3 (x, - k) pin 20
or (k, = k,) sin 3a =§§_ | (34)

Summa.ry,
The lateral fopces acting on the ship are then:

1. The forces producing the unstable momeny'gue to anglg of

attack
T=1/3 oV (k, - ky) s8in 2¢ Q (17)
i 2
Y (35)

The forges producing this moment are distributed according to the

law

3 -
fax = 2 5 88 44 (28)

2. The lateral forces due to rotation gombined with tangential

velocity. Thege forces have no resultant and ng regultant moment,

They are distributed according t¢ the law
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. |
fag ek, (x B 48) ax (29)

. . o v ,
3, The centrifugal forces on the ship itself ~E——-Q {25)

rrovided the shipr is in static eguilibrium., If in addition the
rass of the ship is distributed longitudinally rrozortional
to the cross seotion these are distributed aoccording to the law

=]
f dx = pRv S dx. ' (37)

These nearly neutralize the second term of (3)*,
4. The added centrifugal force due %o the added longitudinal

inertia -
pRv X Q - (31)

This is distributed approximately as a concenirated load

2 2 '
LV Q D0 (33)
T o3 (Bt ge
at each end and & load distributed according to the law
2 2 .
fax = - B 2o ax (38)

5. The added centrifugal force due to the added transverse

inertia .
2
o}
'—Ry— k, Q sin®a (25)

This is distributed according to the law

oV

R

P> g2 Ko
R R (k) - k)7

fax =

k,sin®a S dx = S dax  (3C)

*Note: For any other mass distribution it would be of course easy
to calculate the corresponding force distribution, Since normally
the static bending moments of the hull aTes everywhere hogging mo-
ments, the actual force distribution is somewhat greater at the
ends and less in the middle., L.B.T.
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6. The lateral force on the fins practically concentrated at

the center of pressure of the fins

p v®

— Q . ' (25)

The sum total of all forces is then:

Threé concentrated loads

PV Q D%\ -

a) at front end outward = 5 (k1 + 577 ) (33)
p Ve

b} at center of pressure 7 Q . (25)

of fins inward .
2 2 -
D 3
¢) at rear end outward pRV g (ks + 252->. (33)

And a force distributed along the ship, with the resultant outward

intensity
£ = kex)%%+(l—k2——‘—2%2§+kgsin2a)31
' (39)
=—v2[(a—k2x)g‘i+(l-k?—2L3> +-§z—(-k—l_{i°‘c-1—-)——S]
Fote:

The method 6f reasoning used in these papers introduces dis—
., crepancies between the computed forces and the actual forces due
to two things:

1) The viscosity of the air is assumed to be zero with the
consequent elimination of all viscous drag.

These discrepancies in the present state of the theory can _
probably only be estimated by comparison with experiment.

2) The transverse flow about any elément of the ship is as-
sumed to be the same as that about the corresponding portion of an -

infinite cylinder. This assumption is most accurate when %’ gg “
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jg small, It will represent most closely the condisions amidships
(%= g§-=o_‘>. The largest discrepancies will occur neart the blunt

ax
nose of the ship (’% %% ?'%;>and the next largest near the taill,

where % %%- is finite but large.

Since even small discrepancies in forces near the ends may
result in relatively large discrepancies in the bending moments
on the ship, it would seem to be very desirable to have some com—
parison of the results of this approximate method with an accurate
computation of the forces on a shape approximating that of the
airship. -

The theory of the potential flow about an ovary ellipsoid is
so complete that it is possible (although tedious) to compute the
actual force distribution along such a share both for straight
flight and steady turning.

It would seem that the comparison of the results of such a
computation with the results of the approximate anklysis given
above would be of value in indicating the magnitude of the dis-

crepancies involved.

L. B. Tuckerman.



Supplementary Note No, 1. Modificaticn of Dr. Munk's formulae.

Mr, C. P. Burgess has called my attention to the practical
disadvantage of an approximate load distribution which is not in
equilibrium. By neglecting the added centrifugal forces in the
calculation of the lateral force on the fins Dr. Munk leaves an

.2 .
unbalanced outward force of %51- Q (k, + k sin® ). This makes

no appreciable difference in the resulting moments on the ship
but is inconvenient in practical computation, since it prevents
the check obtained by computing both ways along the hull.

" This may be avoided by using the total centrifugal force in

calculating the fin load, i.e,

2 . )
Pﬁ-v—Qa(l + k,+ k;sin? o ).=pV?3Q 1/3 (k- k,)sin 2 ©
or

(k,- X,)sin 36 =22 (1 4 K+ kpsin® @)

Since « 1is small the second approximation of its value
will be sufficiently close for a numerical check. Then the total

forces on the ship become:

. = °
a) at bow outward _ pRV Q 1/2(ky + _P‘é‘>

aL

. . . o Vi .
REE et e S SRl

V2 D?
¢c) at stern outward ) _p_R___ Q- 1/23(k + E‘i‘?}

and a foree distributed along the ship with the resultant out-

ward intensity:

2 ds . - Da
£ =&Y [{a(1 + ky+ keein®a)- ke x 18 L (2k, 4k, 81r a-Zs)
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Suprlementary Note No. 3. Discrevancy between Dr. Munk's Theory
and N.P, L, Estimates.

In computatiéns for the ZR-1, Mr. Burgess has noted some dis-
crepancy between Dr, Munk's theory and N.P,L. Estimates baszsd on
model tests. He pointed out that it is =t Jecst partially sxplain-
ed by the neglect in ﬁr. Munk's theory of the lateral resultant

force on the hull arising from viscosity. The N.P.L. results show.

_ Force on hull _ 3400
h = "Total force ~ 9800

.35

>

_ Force on fins _ 6300_ ‘a« .
f ="Total foroe ~ 9600 - =6

The lateral force on the hull is thus over 1/3 the total force
and would make a considerable change in the results.
It seems that the following method might give a somewhat bet-

ter approximation, Aseume forces as iniizs.t-I in the diagram.

Unstakle
roment

Resultant Resultant
force on force on
\( 2
fing. V2 Mll=p_Y
P—f{ Qf P R Qh

Then equating moments:

2 " .
'Eﬁi_ Qa (f+ P 1) =pV3Q 1/2(k ~k,)sin 3 a1



or oa
(¥, - k,)sin 20y =45 (f + fh)

where Dr, Munk found

232,
(k, - k,)sin 36c= £
then sin 294
sin 2@y £+ ? h
gin 29, .
or B = gin 3 &,
- h
Burgess gives @y =79 12" ; a, = 8° 45
HF - e
Subs#ituting -...B = = = 0,51
values . 354 .

The lateral forces on the hull have then apparently a result-
ant applied about half way between the center of buoyancy and the
center of pressure of the fin,

It would seem then that a recomputation by Dr. Munk's method
based on an angle of yaw of 70 13' with the additior of some Tea~
sonable dietribution of lateral forces on the hull with & resultant

at O.5la might give a still closer aprroximation to the actual

forces in a steady turn.
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Supplementary Note No. 3,  Aporeximate Formulae for Lamb's Coef-
ficienta,

In comparing airships of different fineness ratio the vari-
ation of Lamb's coefficients k,, k¥, and k, - k, may not always
be negligible, although this variation need not bs accurately es- -
timated. For such cases it may be worth while noting the linear
approximations given on the accompanying figures. These caver the
whole range #ith & maximum error of 5% of the volume or the range
4 < % < o with a maximum error of 2%.

It is of course obvious that in the range 4 < %'< = parabolic’
arrroximations would give still closer values. For instance, in
this range the approximation k, - k; =1~ 1.53 <%>}4' has & '~
maximum error of less than 0.3% Ir view of the roughness of the l
other approximations involved the-aocuracy gained is piobably not
worth the extra labor.

L.B.T.
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